

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina
DISCIPLINA: Algebra Linear
CODIGO: G03ALIN0.01

Início: 01/2024

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas Créditos: 04

Natureza: Teórico

Área de Formação - DCN: Básica

Competências/habilidades a serem desenvolvidas no Curso de Engenharia de

Computação: C02 (H02.1, H02.2)

Competências/habilidades a serem desenvolvidas no Curso de Engenharia de Controle e

Automação: C2.0, H2.1, H2.2

Departamento que oferta a disciplina: Departamento de Formação Geral

Ementa:

Espaços vetoriais, subespaços, base, dimensão. Transformações lineares e matriz de uma Transformação Linear. Teorema do Núcleo e da Imagem. Autovalores e Autovetores; produto interno; ortonormalização; diagonalização de operadores, Teorema de Cayley- Hamilton e Teorema Espectral; Formas quadráticas; aplicações.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Computação	4°	Matemática	Х	
Engenharia de Controle e Automação	3°	Matemática	Х	

INTERDISCIPLINARIDADES

Pré-requisitos	
Geometria Analítica e Algebra Linear	
Correquisitos	
Não há	

Objetivos: A disciplina deverá possibilitar ao estudante:

- 1 Ser capaz de reconhecer e trabalhar com propriedades de Espaços Vetoriais.
- 2 Ser capaz de reconhecer Subespaços Vetoriais.
- 3 Saber aplicar mudança de base.
- 4 Saber calcular autovalores e autovetores e interpretar seus papéis em problemas.
- 5 Saber obter vetores ortogonais a vetores dados.
- 6 Ser capaz de trabalhos com propriedades de Produto Interno.
- 7 Ser capaz de reconhecer que elementos e/ou soluções de problemas de Engenharia, ou de outra área da Matemática, constituem um Espaço Vetorial e explorar os tópicos estudados em sua solução.

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Unidades de ensino	Carga-horária Horas/aula
 1 ESPAÇOS VETORIAIS - Definição e exemplos de Espaços Vetoriais e Subespaços: - Espaço de Matrizes, Polinômios e Rn. - Combinação Linear e Dependência e Independência Linear. - Base e dimensão de um espaço vetorial. - Mudança de base. 	16
2 TRANSFORMAÇÕES LINEARES - Exemplos de transformação lineares do plano no plano Transformação Linear em Espaços Vetoriais Teoremas sobre matrizes de transformações Lineares Teorema do Núcleo e da Imagem.	12
 DIAGONALIZAÇÃO DE OPERADORES - Autovalores e autovetores. - Polinômio característico. - Operadores diagonalizáveis. - Polinômio minimal e Teorema de Cayley-Hamilton. 	8
4 PRODUTOS INTERNOS - Definição e propriedades dos produtos internos Processo de Ortogonalização de Gram – Schmidt Ortonormalização.	6
 FORMAS QUADRÁTICAS Operadores ortogonais e auto-adjuntos. Teorema Espectral, Formas lineares, bilineares e quadráticas. 	6
 APLICAÇÕES (a escolher) - Mudança de base vetorial entre coordenadas cartesianas. - Classificação de Quádricas. - Sistemas de equações diferenciais lineares. - Processos iterativos. - Conjuntos convexos e programação linear. - Produto interno e estatística. - Outras aplicações. 	12
Tota	I 60

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Básica		
1	BOLDRINI, J. L. et al. Álgebra linear. 3. ed. São Paulo: HARBRA, 1986.	
	LEON, S. J. Álgebra linear com aplicações. 9. ed. Rio de Janeiro: LTC, 2019.	
	STEINBRUCH, A.; WINTERLE, P. Álgebra linear. 2. ed. São Paulo: Pearson Education, c1987.	

Bibliografia Complementar					
	ANTON, H.; RORRES, C. Álgebra linear com aplicações. 8. ed. Porto Alegre: Bookman, 2001.				
	EDWARDS JÚNIOR, C. H.; PENNEY, D. E. Introdução à álgebra linear. Rio de Janeiro: LTC, 2000.				
	LIPSCHUTZ, S. Álgebra linear: teoria e problemas. 3. ed. São Paulo: Makron Books, 1994				
	POOLE, D. Álgebra linear: uma introdução moderna. 2. ed. São Paulo: Cengage Learning, c2017.				
5	STRANG, G. Álgebra linear e suas aplicações. São Paulo: Cengage Learning, c2010.				