

Plano de Ensino

CAMPUS: Leopoldina

DISCIPLINA: Algoritmos e Estruturas de Dados CÓDIGO: G03AEDA0.01

Início: 2023/1

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas Créditos: 04

Natureza: Teórico-prática

Área de Formação - DCN: Básica

Competências/habilidades a serem desenvolvidas: C3.0, H3.1, C8.0, H8.1, H8.2

Departamento que oferta a disciplina: Departamento de Computação

Ementa:

Tipos abstratos de dados (TAD). Tipos Abstratos de Dados versus Estruturas de Dados. Alocação de memória estática e dinâmica. Introdução a algoritmos de busca. Recursividade e algoritmos recursivos. Introdução a algoritmos de ordenação. Listas Lineares com representação sequencial (contígua) e encadeada. Listas ordenadas. Listas duplamente encadeadas. Listas circulares. Listas com descritor. Pilhas e Filas. Árvores com representação sequencial e encadeada. Árvores Binárias. Caminhamentos em largura e em profundidade (pré-ordem, em-ordem e pós-ordem), com e sem recursividade. Árvore Binária de Busca. Filas de prioridade e Heaps binárias. Heaps máxima (max-heap) e mínima (minheap). Introdução a grafos. Representação de grafos direcionados e não-direcionados. Buscas em grafos: busca em largura e em profundidade (com e sem recursividade). Modelagem e resolução de problemas por meio de grafos. Aplicação das estruturas de dados na resolução de problemas computacionais.

Cursos	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	2°	Computação e Matemática Aplicada	X	

INTERDISCIPLINARIDADES

Pré-requisitos	
G03APCO0.01 - Algoritmos e Programação de Computadores	
Correquisitos	
Não há	

Obi	Objetivos: A disciplina deverá possibilitar ao estudante		
1	Caracterizar e diferenciar Tipos Abstratos de Dados e Estruturas de Dados.		
2	Empregar recursividade na proposição de soluções para problemas computacionais e implementar algoritmos recursivos.		
3	Implementar e relacionar os principais algoritmos de pesquisa e ordenação.		
4	Implementar estruturas de dados sequenciais e encadeadas.		
5	Classificar e implementar estruturas de dados lineares e não lineares.		
6	Aplicar estruturas de dados distintas para solucionar determinado problema e analisar		

Plano de Ensino

	as vantagens e desvantagens do emprego das estruturas utilizadas.	
7	Projetar e implementar aplicações empregando as estruturas de dados clássicas: listas, filas, pilhas, árvores, heaps e grafos.	
8	Elaborar soluções para problemas computacionais aplicando estruturas de dados adequadas.	

Unidades de ensino		Carga-horária Horas/aula
1	Conceitos introdutórios: 1.1 Estruturas de dados versus Tipos Abstratos de Dados (TAD) 1.2 Motivação para uso de TAD 1.3 Alocação estática versus alocação dinâmica 1.4 Exemplos	4
2	Introdução a algoritmos de busca: 2.1 Alguns algoritmos de busca 2.1.1 Busca sequencial 2.1.2 Busca sequencial ordenada 2.1.3 Busca binária 2.2 Exemplos e aplicações	4
3	Recursividade: 3.1 Conceitos preliminares 3.2 Caso(s) base(s) e passo recursivo 3.3 Pilha de chamadas 3.4 Árvore de recursão 3.5 Exemplos e aplicações	6
4	Introdução a algoritmos de ordenação: 4.1 Alguns algoritmos de ordenação 4.1.1 Ordenação por seleção (selection sort) 4.1.2 Ordenação por inserção (insertion sort) 4.1.3 Ordenação por flutuação (bubble sort) 4.1.4 Ordenação rápida (quick sort) 4.2 Exemplos e aplicações	6
5	Listas Lineares: 5.1 Lista linear sequencial (contígua) 5.2 Lista linear encadeada 5.3 Lista linear ordenada 5.4 Lista linear duplamente encadeada 5.5 Lista circular 5.6 Exemplos e aplicações	10
6	Filas e Pilhas: 6.1 Representação	8

Plano de Ensino

	6.2 Operações elementares: inserção, remoção e busca 6.3 Exemplos e aplicações	
7	Introdução a Árvores: 7.1 Principais conceitos 7.2 Tipos de representação: sequencial e encadeada 7.3 Árvore Binária 7.4 Árvore Binária de Busca 7.4.1 Principais operações: inserção, remoção e busca 7.5 Caminhamentos 7.5.1 Profundidade (com e sem recursividade): pré-ordem, emordem e pós-ordem 7.5.2 Largura 7.6 Exemplos e aplicações	8
8	Introdução a heaps e filas de prioridades: 8.1 Conceitos preliminares 8.2 Heaps binárias 8.2.1 Conceito e princípio de funcionamento 8.2.2 Heap máxima (max-heap) e heap mínima (min-heap) 8.2.3 Representação vetorial 8.2.4 Operações: inserção, remoção e extração de valor máximo (max-heap) ou mínimo (min-heap) 8.3 Exemplos e aplicações	4
9	Introdução a Grafos: 9.1 Representação gráfica 9.2 Grafos direcionados e não-direcionados 9.3 Representação implícita e por lista de arestas, matriz de adjacências, matriz de incidências e listas de adjacências 9.4 Buscas em grafos: busca em largura e em profundidade (com e sem recursividade) 9.5 Modelagem de problemas usando grafos 9.6 Exemplos e aplicações	10
	Total	60

Bibliografia Básica	
1	CELES FILHO, Waldemar; CERQUEIRA, Renato; RANGEL, José Lucas. Introdução a
	Estruturas de dados: com técnicas de programação em C. 2 ed. Rio de Janeiro:
	Elsevier, c2004. ISBN: 9788535283457.
2	SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estrutura de dados e seus
	algoritmos . 3 ed. Rio de Janeiro: LTC, 2010. ISBN: 9788521617501.
3	TENENBAUM, Aaron M.; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas
	de dados usando C. São Paulo: Pearson Makron Books, 1995. ISBN:
	9788534603485.

Plano de Ensino

Bib	Bibliografia Complementar		
1	LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN, Clifford; CORMEN, Thomas H.		
	Algoritmos: teoria e prática. Rio de Janeiro: Elsevier; LTC, 2012. ISBN:		
	9788535236996.		
2	DROZDEK, A. Estrutura de dados e algoritmos em C++ . 2 ed. São Paulo: Cengage		
	Learning, 2017. ISBN: 9788522125739.		
3	DAMAS, Luís. Linguagem C . Tradução de João Araújo Ribeiro, Orlando Bernardo		
	Filho. 10 ed. Rio de Janeiro: LTC, 2007. 410 p. ISBN 9788521615194.		
4	GOODRICH, Michael T.; TAMASSIA, Roberto. Estruturas de dados e algoritmos em		
	Java. Tradução Bernardo Copstein. 5. ed. Porto Alegre: Bookman, 2013. ISBN:		
	9788582600184.		
5	SCHILDT, Herbert. C : completo e total. Tradução de Roberto Carlos Mayer. 3 ed. rev. e		
	atual. São Paulo: Pearson Education do Brasil, 1997. 827 p., il. ISBN 9788534605953.		

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1281/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 10:47)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1281, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 6898f31171