

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina

DISCIPLINA: Análise de Circuitos Elétricos II **CÓDIGO:** G03ACEL2.01

Início: 2023/1

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas/aula Créditos: 04

Natureza: Teórica

Área de Formação - DCN: Profissionalizante

Competências/habilidades a serem desenvolvidas: C2.0, H2.1, H2.2, C8.0, H8.2

Departamento que oferta a disciplina: Departamento de Eletroeletrônica

Ementa:

Circuitos trifásicos equilibrados e desequilibrados. Potência em circuitos trifásicos. Análise transitória de circuitos com capacitores e indutores, resposta livre, ao degrau e às funções singulares. Solução clássica de circuitos, condições iniciais e solução completa. Frequência complexa, função de transferência. Solução de circuitos através da Transformada de Laplace.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	6°	Eletricidade	X	

INTERDISCIPLINARIDADES

Pré-requisitos	
G03ACEL1.01 - Análises de Circuitos Elétricos I	
Correquisitos	
Não há	

Ob	Objetivos: A disciplina deverá possibilitar ao estudante	
1	Interpretar e resolver problemas envolvendo circuitos trifásicos equilibrados.	
2	Interpretar e resolver problemas envolvendo circuitos trifásicos desequilibrados.	
3	Determinar a potência em circuitos trifásicos.	
4	Calcular transitórios em circuitos elétricos com capacitores e indutores.	
5	Aplicar transformada de Laplace na resolução de circuitos elétricos.	

Unidades de ensino		Carga-horária Horas/aula
1	Circuitos Trifásicos:	
	-Sequência de fase	
	-Sistemas em delta e estrela	
	-Conexões em estrela e delta equivalentes	10
	-Circuito equivalente monofásico para cargas equilibradas	
	-Sistemas com cargas não-equilibrada	
2	Potência em circuitos trifásicos:	
	-Determinação da potência ativa e reativa trifásica	
	-Medição de potência trifásica: método dos 2 Wattímetros e método	10
	dos 3 Wattímetros	
	-Correção do fator de potência	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

3	Análise Transitória de Circuitos: -Capacitores -Indutores -Funções sigulares: degrau, rampa e impulso -Circuitos RL -Circuitos RC -Circuitos RLC	10
4	Resposta Livre, ao Degrau e às Funções Singulares: -Resposta livre e ao degrau -Resposta às funções singulares	10
5	Solução Clássica de Circuitos: -A solução geral das equações diferenciais -Condições iniciais -Solução completa de circuitos -Significado físico das soluções complementar e particular	10
6	Solução de Circuitos usando Transformada de Laplace: -Transformada de Laplace -Expansão em frações parciais -Circuito transformado -Solução completa de circuitos	10
	Total	60

Bibliografia Básica		
1	COSTA, V. M Circuitos elétricos lineares: enfoques teórico e prático.	
I	Interciência: Rio de Janeiro, 2013.	
2	JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R Fundamentos de análise de circuitos elétricos. 4. ed. Rio de Janeiro: LTC, 2000.	
	circuitos elétricos. 4. ed. Rio de Janeiro: LTC, 2000.	
3	IRWIN, J. D Análise de circuitos em engenharia . 4. ed. São Paulo: Makron, 2000.	

Bibliografia Complementar	
1	NAHVI, Mahmood; EDMINISTER, Joseph. Teoria e problemas de circuitos
	elétricos. 4. ed. Porto Alegre: Bookman, 2005.
2	NILSSON, James William; RIEDEL, Susan A. Circuitos elétricos. Tradução de
	Ronaldo Sérgio de Biasi. 6. ed. Rio de Janeiro: LTC, 2003.
3	BOYLESTAD, Robert L. Introdução à análise de circuitos. 10. ed. São Paulo:
	Pearson, 2004.
4	ALEXANDER, Charles K.; SADIKU, Matthew N. O. Fundamentos de circuitos
	elétricos. Tradução de Ariovaldo Griesi. 3. ed. Porto Alegre: AMGH, 2007.
5	ALBUQUERQUE R. O. Análise de Circuitos em Corrente Alternada. Editora Érica,
	1ª edição, 2006.

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1239/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 07:54)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1239, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: b19e78247c