

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina	
DISCIPLINA: Controle Automático I	CÓDIGO: G03CAUT1.01

Início: 2023/1

Carga Horária: Total: 90 horas/aula Semanal: 06 aulas/aula Créditos: 06

Natureza: Teórica/Obrigatória

Área de Formação - DCN: Profissionalizante

Competências/habilidades a serem desenvolvidas C2.0, H2.1, H2.2, C5.0, H5.1 Departamento que oferta a disciplina: Departamento de Eletroeletrônica - Leopoldina

Ementa:

Modelagem de sistemas físicos no domínio da frequência: Função de Transferência de sistemas mecânicos e elétricos. Modelagem de sistemas físicos no domínio do tempo: espaço de estados. Conversão entre modelos. Representação gráfica de sistemas de controle: diagramas de blocos e gráfico de fluxo de sinais. Resposta transitória: sistema padrão de 2ª ordem, sistemas de ordem superior e sistemas com zeros. Controladores Industriais. Análise de estabilidade: critério de estabilidade de Routh-Hurwitz. Erro de regime estacionário. Projeto de malhas de controle simples. Sistemas de controle digital: função de transferência pulsada em malha fechada, resposta transitória, estabilidade e erro de estado estacionário.

Curso(s)		Período	Eixo	Obrigatória	Optativa		
Engenharia	de	Controle	е	5°	Controle de	X	
Automação					Processos		

INTERDISCIPLINARIDADES

Prerrequisitos
G03FSSI0.01 - Fundamentos de Sinais e Sistemas
G03MNUM1.01 - Métodos Numéricos I
Correquisitos
G03ACEL1.01 - Análise de Circuitos Elétricos I

Ob	Objetivos: A disciplina deverá possibilitar ao estudante		
1	Realizar modelagem de sistemas físicos no domínio da frequência e no domínio do		
1	tempo.		
2	Analisar resposta transitória e de regime estacionário de sistemas de controle.		
3	Projetar sistemas de controle simples.		
4	Analisar a estabilidade de sistemas de controle.		
5	Modelar e analisar sistemas de controle digital.		

Un	idades de ensino	Carga-horária Horas/aula
1	Introdução aos sistemas de controle: - Os sistemas de controle - Histórico dos sistemas de controle - Topologias dos sistemas de controle - Exemplos de sistemas de controles	6
2	Modelagem de sistemas físicos:	16

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

	- Equações diferenciais de sistemas físicos	
	- Função de transferência de sistemas lineares	
	- Modelos em diagrama de blocos	
	- Modelos em diagramas de fluxo de sinal	
	- Aproximações lineares de sistemas físicos	
	Modelos em variáveis de estado:	
	- Variáveis de estado de sistemas dinâmicos	
	- Equação diferencial de estado	
3	- Modelo de estado em diagramas de fluxo de sinal	18
3	- Função de transferência a partir de equações de estado	10
	- Resposta no domínio do tempo e matriz de transição de	
	estados	
	- Discretização da resposta no domínio do tempo	
	Desempenho de sistemas de controle com retroação:	
	- Sistemas de 1ª e 2ª ordem	
	- Desempenho de sistemas de segunda ordem	
4	- Efeitos de um terceiro pólo e de um zero na resposta de um	18
	sistema de segunda ordem	
	- Localização das raízes no plano s e a resposta transitória	
	- Erro de estado estacionário	
	Redução de subsistemas múltiplos:	
1 _	- Álgebra de diagramas de blocos	
5	- Regra de Mason aplicada a sistemas em gráfico de fluxo de	10
	sinal	
	- Projeto de sistemas de controle simples	
	Estabilidade de sistemas de controle com retroação:	
6	- O conceito de estabilidade	10
	- O critério de estabilidade de Routh – Hurwitz	
	- Estabilidade relativa de sistemas de controle com retroação	
	Sistemas de Controle Digital:	
7	- Função de transferência pulsada	10
7	- Análise de sistemas digitais com a Transformada z	12
	- Resposta transitória e de regime estacionário	
	- Estabilidade de sistemas de controle digital Total	90
	I Ulai	90

В	Bibliografia Básica		
1	NISE, N. S Engenharia de sistemas de controle. 7 ed. Rio de Janeiro: LTC, 2017.		
2	OGATA, K Engenharia de controle moderno . 5 ed. São Paulo: Pearson Education do Brasil, 2010.		
3	DORF, R. C.; BISHOP, R. H Sistemas de Controle Modernos . 11 ed. Rio de Janeiro: LTC, 2018.		

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Complementar		
1	FRANKLIN, G. F.; POWELL, J. D.; EMAMI-NAE, A Sistemas de Controle para	
	Engenharia. 6 ed. Porto Alegre: Bookman, 2013.	
2	PHILLIPS, C. L.; PARR, J. M Feedback control systems. 5 ed. Boston: Prentice	
	Hall, 2011.	
3	GOLNARAGHI, F.; KUO, B. C Automatic control systems. 9 ed. Danvers, M. A.:	
	John Wiley, 2010.	
4	MAYA, P. Á.; LEONARDI, F Controle Essencial. 2 ed. São Paulo: Pearson	
	Education do Brasil, 2014.	
5	MONTEIRO, L. H. A Sistemas dinâmicos. 2 ed. São Paulo: Ed. Livraria da Física	
	2006.	

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1262/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:20)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1262, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 7689ba9c89