

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina	
DISCIPLINA: Controle Automático II	CÓDIGO: G03CAUT2.01

Início: 2023/1

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas/aula Créditos: 04

Natureza: Teórica / Obrigatória Área de Formação - DCN: Específico

Competências/habilidades a serem desenvolvidas C2.0, H2.1, H2.2, C5.0, H5.1

Departamento que oferta a disciplina: Departamento de Eletroeletrônica

Ementa:

Introdução ao projeto de controle clássico: conceito e objetivo, estabilidade, rastreamento, regulação, sensibilidade. Projeto de sistemas de controle pelo método do Lugar das Raízes: conceito, esboço do Lugar das Raízes e análise da dinâmica de sistemas (características transitórias, erro em regime, estabilidade); compensador de avanço, atraso e avanço-atraso; controladores PID (tradicionais e modificados). Projeto de controle digital pelo Lugar das Raízes. Projeto de sistemas de controle pelo método de resposta em frequência: conceito de resposta em frequência; esboço dos diagramas de Bode; análise da dinâmica de sistemas (características transitórias, erro em regime, margens de estabilidade); critério de estabilidade de Nyquist; compensador de avanço, atraso e avanço-atraso.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	60	Controle de	>	
Engermana de Controle e Automação	O	Processos	^	

INTERDISCIPLINARIDADES

INTERBIGOR ENVIRONDES	
Prerrequisitos	
G03CAUT1.01 – Controle Automático I	
Correquisitos	
Não há	

Ob	jetivos: A disciplina deverá possibilitar ao estudante
1	Compreender os princípios básicos da Teoria de Controle Clássico.
2	Analisar estabilidade e dinâmica de sistemas pelo método do Lugar das Raízes e métodos de resposta em frequência.
3	Projetar controladores no domínio contínuo pelos métodos do Lugar das Raízes e de Resposta em Frequência.
4	Projetar controladores no domínio discretos pelo método do Lugar das Raízes.
5	Usar o método de resposta em frequência para analisar sistemas de controle.

Un	idades de ensino	Carga-horária Horas/aula
1	Introdução ao projeto de controle clássico	02
2	Método do Lugar das Raízes:	
	- Conceito e aplicabilidade do método	10
	 Esboço e Refino do Lugar das Raízes 	10
	- Análise de Estabilidade e propriedades Dinâmicas	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

3	Projeto de controladores pelo método do Lugar das Raízes: - Compensador de Avanço de Fase - Compensador de Atraso de Fase - Compensador de Avanço-Atraso de Fase e Controlador PID - Controlador PID	12
4	 Método de Resposta em Frequência: Conceito e aplicabilidade do método Esboço do Diagrama de Bode Análise da dinâmica de sistemas (características transitórias, erro em regime, margens de estabilidade) Critério de estabilidade de Nyquist 	12
5	Projeto de controladores pelo método de Resposta em Frequência: - Compensador de Avanço de Fase - Compensador de Atraso de Fase - Compensador de Avanço-Atraso de Fase - Controlador PID	12
6	Projeto de Controladores no domínio discreto: - Conceito, representações e estabilidade - Implementações de Controladores - Simulações computacionais	12
	Total	60

Bi	Bibliografia Básica		
1	FRANKLIN, G. F.; POWELL, J. D.; EMAMI-NAE, A Sistemas de Controle para		
ı	Engenharia. 6 ed. Porto Alegre: Bookman, 2013.		
2	OGATA, K Engenharia de controle moderno. 5 ed. São Paulo: Pearson		
	Education do Brasil, 2010.		
3	DORF, R. C.; BISHOP, R. H Sistemas de Controle Modernos. 13 ed. Rio de		
	Janeiro: LTC, 2018.		

Bil	oliografia Complementar
1	NISE, N. S Engenharia de sistemas de controle. 7 ed. Rio de Janeiro: LTC, 2017
2	MAYA, P. Á.; LEONARDI, F Controle Essencial . 2 ed. São Paulo: Pearson Education do Brasil, 2014.
3	PHILLIPS, C. L.; PARR, J. M Feedback control systems . 5 ed. Boston: Prentice Hall, 2011.
4	GOLNARAGHI, F.; KUO, B. C Automatic control systems . 9 ed. Danvers, M. A.: John Wiley, 2010.
5	CAMPOS, M. C. M. M.; TEIXEIRA, H. C. G Controle típicos de equipamentos e processos industriais. Edgard Blucher, ed. 2, 2010.

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1263/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:20)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1263, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 33dde5e192