

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina

DISCIPLINA: Física Experimental - Mecânica CÓDIGO: G03FEMEC0.01

Início: 04/2025

Carga Horária Total: 30 horas/aula Semanal: 02 aulas Créditos: 02

Natureza: Prática

Área de Formação - DCN: Básica

Competências/habilidades a serem desenvolvidas: Definidas no PCC de cada

curso

Departamento que oferta a disciplina: Departamento de Formação Geral

Ementa:

Práticas em laboratório de temas e tópicos abordados nas disciplinas básicas de Física, mais especificamente, experimentos na área de Mecânica.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Computação	2°	Física e Química	X	
Engenharia de Controle e Automação	2°	Física e Química	Х	

INTERDISCIPLINARIDADES

Prerrequisitos	
Não há	
Correquisitos	
Fundamentos de Mecânica (G03FMEC0.01)	

Obj	Objetivos: A disciplina deverá possibilitar ao estudante	
1	Estabelecer uma visão crítica do mundo newtoniano	
2	Reconhecer uma grandeza física e unidades	
3	Avaliar e medir grandezas físicas	
4	Avaliar coerência de resultados	
5	Resolver problemas de cunho prático e teórico	

Unidades de ensino		Carga-horária Horas/aula	
	Introdução:		
1	1.1 – Potências de 10		
	1.2 – Ordem de grandeza	6	
	1.3 – Algarismos significativos		
	1.4 – Medidas e incertezas		
	1.5 – Tratamento de dados		
2	Práticas de cinemática	4	
3	Práticas de dinâmica	8	
4	Práticas de trabalho e energia e de colisões	6	
5	Práticas de momento angular e rotações	4	
6	Desenvolvimento de atividades de aprendizado baseada projeto	2	
	Total	30	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Básica	
1	HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física: mecânica. 10. ed.
	Rio de Janeiro: Livros Técnicos e Científicos, 2016. v. 1.
2	YOUNG, H. D.; FREEDMAN, R. A. Física I: mecânica. 12. ed. Pearson, 2008.
3	TIPLER, P.; MOSCA, G. Física para cientistas e engenheiros: mecânica, oscilações
	e ondas, termodinâmica. 6. ed. LTC, 2009.

Bib	Bibliografia Complementar		
1	CHAVES, A.; SAMPAIO, J. L. Física básica: mecânica. LTC, 2007.		
2	RAMOS, L. a, M. Física experimental . Porto alegra: Mercado Aberto Editora e		
	Propaganda Ltda, 1984.		
3	MASSON, T. J.; SILVA, G. T. Manual de física experimental. São Paulo: Editora		
	Plêiade Ltda, 2006.		
	MUKAI, H.; FERNANDES, P. R. G. Manual de Laboratório: física experimental 1.		
4	Universidade Estadual de Maringá; Centro de Ciências Exatas/Departamento de Física,		
	2013.		
5	FEYNMAN, R. P.; LEIGHTON, R. B.; SANDS, M. Lições de física de Feynman. Porto		
	Alegre: Bookman, 2008. v. 1.		