

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina
DISCIPLINA: Geometria Analítica e Álgebra Linear
CÓDIGO: MAT02OB

Início: 03/2023

Carga Horária: Total: 60 horas/aula Semanal: 04 aulas Créditos: 04

Natureza: Teórica

Área de Formação - DCN: Básica

Competências/habilidades a serem desenvolvidas:

Departamento que oferta a disciplina: Departamento de Formação Geral

Ementa:

Matrizes, sistemas de equações lineares e determinantes. Álgebra vetorial. Retas e planos. Espaços vetoriais em R2 e R3. Autovalores e autovetores de matrizes. Diagonalização de matrizes. Cônicas.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	1º	Matemática	Х	
Engenharia de Computação	1º	Matemática	Х	

INTERDISCIPLINARIDADES

Pre-requisitos	
Não há	
Correquisitos	
Não há	

Objet	Objetivos: A disciplina deverá possibilitar ao estudante		
1	Resolver sistemas lineares.		
2	Realizar operações básicas envolvendo vetores.		
3	Aplicar as técnicas vetoriais a problemas em geometria plana e espacial.		
4	Representar e identificar retas, planos, cônicas por equações.		
5	Determinar interseções, distâncias e ângulos entre retas e planos.		
6	Identificar R2 e R3 como espaços vetoriais e seus subespaços. Determinar base e		
	dimensão de subespaços de R2 e R3.		
7	Aplicar processo de Gram-Schmidt para encontrar bases ortogonais eortonormais de		
	subespaços de R2 e R3.		
8	Calcular autovalores e autovetores de uma matriz 2x2 e 3x3.		
9	Obter as equações reduzidas de cônicas usando mudanças de coordenada.		

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Piano de Ensino		
Unidades de ensino		Carga-horária Horas/aula
1	 Matrizes e Sistemas de Equações Lineares 1.1 Matrizes: operações com matrizes, propriedades da álgebra matricial. 1.2 Sistemas de equações lineares: método de Gauss-Jordan, sistemas lineares homogêneos. 1.3 Matriz inversa: propriedades da inversa, método para inversãode matrizes. 1.4 Determinantes: desenvolvimento por cofatores, propriedadesdos determinantes, inversa e matriz adjunta. 	18
2	Álgebra Vetorial 2.1 Vetores: soma de vetores e multiplicação por escalar. Produto escalar, norma, projeção ortogonal. Produto vetorial. Produto misto.	10
3	Retas e Planos 3.1 Planos: equações gerais e paramétricas. 3.2 Retas: equações paramétricas e simétricas. 3.3 Posições relativas entre retas, entre planos e entre retas e planos. 3.4 Perpendicularidade e ortogonalidade. 3.5 Medida angular. 3.6 Distâncias.	10
4	Espaços Vetoriais R2 e R3 4.1 Combinação linear. (In)dependência linear. Subespaço. Base e dimensão. Rotação e translação de eixos. Bases ortogonais e ortonormais: processo de ortogonalização de Gram-Schmidt.	8
5	 Diagonalização e Identificação de Cônicas 5.1 Autovalores e autovetores em matrizes 2x2 e 3x3: definição e propriedades. 5.2 Polinômio característico. 5.3 Diagonalização de matrizes 2x2 e 3x3. 5.4 Equações da elipse, hipérbole e parábola. 5.5 Diagonalização de matrizes simétricas. 5.6 Aplicação: reconhecimento de cônicas. 	14
	Total	60

Bib	Bibliografia Básica		
1	BOLDRINI, J. L. et al. Álgebra linear. 3. ed. São Paulo: HARBRA, 1986.		
2	CAMARGO, I.; BOULOS, P. Geometria analítica: um tratamento vetorial. 3. ed. São Paulo:		
	PearsonEducation do Brasil, 2005.		
3	STEINBRUCH, A.: WINTERLE, P. Geometria analítica, 2, ed. São Paulo: Pearson, 1995.		

Bib	Bibliografia Complementar				
1	SANTOS, N. M. dos. Vetores e matrizes: uma introdução à álgebra linear. 4. ed. São				
	Paulo: ThomsonLearning, c2007.				
2	SANTOS, R. J. Matrizes, vetores e geometria analítica. Belo Horizonte: Imprensa				
	Universitária daUFMG, c2018.				
3	SANTOS, R. J. Um curso de geometria analítica e álgebra linear. Belo Horizonte:				
	ImprensaUniversitária da UFMG, c2014.				
4	MUNEM, M. A.; FOULIS, D. J. Cálculo: volume 2. Rio de Janeiro: LTC, c1982.				
5	WINTERLE, P. Vetores e geometria analítica. São Paulo: Pearson Education do Brasil,				
	c2000.				

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1987/2023 - DIRGRAD (11.51)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 14/12/2023 13:44) GIANI DAVID SILVA DIRETOR ADJUNTO - SUBSTITUTO DIRGRAD (11.51) Matrícula: ###343#1

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1987, ano: 2023, tipo: PLANO DE ENSINO, data de emissão: 14/12/2023 e o código de verificação: 021672e82b