

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina	
DISCIPLINA: Laboratório de Controle Automático I	CÓDIGO: G03LCAU1.01

Início: 2023/1

Carga Horária: Total: 30 horas/aula Semanal: 02 aulas/aula Créditos: 02

Natureza: Prática

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas C2.0, H2.1, H2.3, H2.4, C5.0, H5.1

Departamento que oferta a disciplina: Departamento de Eletroeletrônica

Ementa:

Atividades de laboratório relacionadas a Controle Automático I; simulação de modelos em computadores com software e pacotes específicos; obtenção de modelos por método de identificação; sintonia de controladores PID; experimentos de controle na planta industrial.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	5°	Controle de	×	
Lingerinaria de Controle e Adtornação		Processos		

INTERDISCIPLINARIDADES

Prerrequisitos	
Não há	
Correquisitos	
G03CAUT1.01 – Controle Automático I	

Ob	Objetivos: A disciplina deverá possibilitar ao estudante	
1	Compreender o processo de simulação computacional de sistemas dinâmicos e	
	sistemas de controle.	
2	Simular sistemas de controle com software e pacotes específicos de simulação.	
3	Analisar a resposta de sistemas de controle frente à alteração de parâmetros do	
3	controlador PID.	
4	Realizar a identificação de sistemas utilizando o método da curva de reação.	
5	Realizar experimentos na planta didática, avaliando o desempenho e estudando o	
	impacto de não linearidades no desempenho do controlador.	

Unidades de ensino		Carga-horária Horas/aula
1	Simulação de sistemas modelados no espaço de estados: - Solução numérica de EDOs - Uso de softwares de computação numérica para simulação de sistemas	10
2	Simulação de controle no espaço de estado com o Simulink: - Identificação de sistemas com o método da curva de reação - Sintonia do controlador PID com a regra de Ziegler Nichols - Sintonia fina do controlador PID - Análise de desempenho frente à variação de K_p , K_i e K_d	10
3	Experimentos de controle automático na planta didática: - Controle liga desliga - Controle PID - Análise de comportamento de plantas reais	10

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

30

Bil	Bibliografia Básica		
1	NISE, N. S Engenharia de sistemas de controle. 7 ed. Rio de Janeiro: LTC, 2017.		
2	OGATA, K Engenharia de controle moderno. 5 ed. São Paulo: Pearson Education		
	do Brasil, 2010.		
3	DORF, R. C.; BISHOP, R. H Sistemas de controle modernos. 11 ed. Rio de		
3	Janeiro: LTC, 2018.		

Total

Bib	Bibliografia Complementar	
1	GILAT, A MATLAB com aplicações em engenharia . 2 ed. Porto Alegre: Bookman. 2006.	
2	HANSELMAN, D.; LITTLEFIELD, B.: Matlab 6: Curso Completo. São Paulo:	
3	Pearson Prentice Hall, 2003. MATSUMOTO, É. Y Simulink 5: Fundamentos . 2 ed. São Paulo: Editora Érica, 2003.	
4	PRESS, W. H.; TEUKOLSKY, S A.; VETTERLING, W. T.; FLANNERY, B. P Numerical Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge,	
	Cambridge University Press, 1992. Disponível em: <www.numerical.recipes>. Acesso em 25 out. 2022.</www.numerical.recipes>	
5	SPERANDIO, D.; MENDES, J. T.; SILVA, L. H. M Cálculo numérico:	
	características matemáticas e computacionais dos métodos numéricos. Prentice Hall, 2003.	

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1267/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:20)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1267, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 8d592bc7e4