

### MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

#### Plano de Ensino

| CAMPUS: Leopoldina                                 |                     |
|----------------------------------------------------|---------------------|
| DISCIPLINA: Laboratório de Controle Automático III | CÓDIGO: G03LCAU3.01 |

Início: 2023/1

Carga Horária: Total: 30 horas/aula Semanal: 02 aulas/aula Créditos: 02

Natureza: Prática

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas C2.0, H2.1, H2.2, C5.0, H5.1

Departamento que oferta a disciplina: Departamento de Eletroeletrônica

### Ementa:

Atividades de laboratório relacionadas a Controle Automático III; simulação de modelos em espaço de estados. Análise e projeto de sistemas modelados em espaço de estados com o MATLAB. Projeto assistido por computador. Experimento em malha de controle multivariável.

| Curso(s)                           | Período | Eixo                  | Obrigatória | Optativa |
|------------------------------------|---------|-----------------------|-------------|----------|
| Engenharia de Controle e Automação | 7°      | Controle de Processos | Х           |          |

### **INTERDISCIPLINARIDADES**

| Prerrequisitos                                      |
|-----------------------------------------------------|
| G03LCAU2.01 – Laboratório de Controle Automático II |
| Correquisitos                                       |
| G03CAU3.01– Controle Automático III                 |

| Ob | Objetivos: A disciplina deverá possibilitar ao estudante                                                                |  |
|----|-------------------------------------------------------------------------------------------------------------------------|--|
| 1  | Compreender o processo de simulação computacional de sistemas modelados no espaço de estado.                            |  |
| 2  | Discretizar modelos de espaço de estados utilizando diferentes regras de aproximação: Euler, integral trapezoidal, etc. |  |
| 3  | Utilizar o Matlab para realização de projeto de controladores e observadores de estado.                                 |  |
| 4  | Simular sistemas de controle no espaço de estados utilizando o Simulink.                                                |  |
| 5  | Simular sistemas de controle com desacoplamento de variáveis.                                                           |  |
| 6  | Aplicar técnicas de controle em espaço de estado em sistemas de controle reais.                                         |  |

| Un | idades de ensino                                                                                                                                                                                                                                   | Carga-horária<br>Horas/aula |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1  | Simulação de sistemas modelados no espaço de estados: - Solução numérica de EDOs - Discretização utilizando regra de euler, integração trapezoidal, etc - Modelos de espaço de estado de tempo discreto - Simulação de sistema genérico de ordem n | 10                          |
| 2  | Simulação de controle no espaço de estado com o Simulink:<br>- Controle com realimentação de estado                                                                                                                                                | 10                          |



# MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

# Plano de Ensino

|   | <ul> <li>Controle com realimentação de estado + controle integral</li> <li>Controlador com variáveis de estado estimadas (com observadores de estado)</li> <li>Análise de desempenho de controladores</li> </ul> |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | Experimentos de controle automático: - Controle com realimentação de estado - Controle com realimentação de estado + controle integral - Controle multivariável com desacoplamento - Análise de desempenho       | 10 |
|   | Total                                                                                                                                                                                                            | 30 |

| Bil | Bibliografia Básica                                                                                  |  |
|-----|------------------------------------------------------------------------------------------------------|--|
| 1   | NISE, N. S Engenharia de sistemas de controle. 7 ed. Rio de Janeiro: LTC, 2017.                      |  |
| 2   | OGATA, K <b>Engenharia de controle moderno</b> . 5 ed. São Paulo: Pearson Education do Brasil, 2010. |  |
| 3   | DORF, R. C.; BISHOP, R. H <b>Sistemas de controle modernos</b> . 11 ed. Rio de Janeiro: LTC, 2018.   |  |

| Bik | Bibliografia Complementar                                                                                |  |
|-----|----------------------------------------------------------------------------------------------------------|--|
| 1   | GILAT, A <b>MATLAB com aplicações em engenharia</b> . 2 ed. Porto Alegre: Bookman.                       |  |
| '   | 2006.                                                                                                    |  |
| 2   | HANSELMAN, D.; LITTLEFIELD, B Matlab 6: Curso Completo. São Paulo:                                       |  |
| 2   | Pearson Prentice Hall, 2003.                                                                             |  |
| 3   | MATSUMOTO, É. Y <b>Simulink 5: Fundamentos</b> . 2 ed. São Paulo: Editora Érica,                         |  |
| 3   | 2003.                                                                                                    |  |
|     | PRESS, W. H.; TEUKOLSKY, S A.; VETTERLING, W. T.; FLANNERY, B. P                                         |  |
| 4   | Numerical Recipes in C: The Art of Scientific Computing. 2 ed. Cambridge,                                |  |
| 4   | Cambridge University Press, 1992. Disponível em: <www.numerical.recipes>. Acesso</www.numerical.recipes> |  |
|     | em 25 out. 2022.                                                                                         |  |
|     | SPERANDIO, D.; MENDES, J. T.; SILVA, L. H. M Cálculo numérico:                                           |  |
| 5   | características matemáticas e computacionais dos métodos numéricos. Prentice                             |  |
|     | Hall, 2003.                                                                                              |  |

### FOLHA DE ASSINATURAS

# PLANO DE ENSINO Nº 1268/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:20 )
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em <a href="https://sig.cefetmg.br/documentos/">https://sig.cefetmg.br/documentos/</a> informando seu número: 1268, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 8614252941