

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina	
DISCIPLINA : Laboratório de Controle Automático IV	CÓDIGO: G03LCAU4.01

Início: 2023/1

Carga Horária: Total: 30 horas/aula Semanal: 02 aulas/aula Créditos: 02

Natureza: Prática

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas: C2.0, H2.1, H2.2, C5.0, H5.1

Departamento que oferta a disciplina: Eletroeletrônica

Ementa:

Atividades de laboratório relacionadas a Controle Automático IV; análise de estabilidade de sistemas não lineares usando simuladores; experimentos com sistemas físicos não-lineares; utilização de ferramentas de análise e projeto assistido por computador; projeto de controladores não-lineares, no domínio contínuo e discreto.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	8°	Controle de Processos	Х	

INTERDISCIPLINARIDADES

Prerrequisitos:	
G03LCAU3.01 - Laboratório de Controle Automático III	
Correquisitos:	
G03CAU4.01 - Controle Automático IV	

Oh	Objetivos, A disciplina doverá possibilitar as estudente	
Ub	Objetivos: A disciplina deverá possibilitar ao estudante	
1	Projetar controladores digitais básicos.	
2	Diferenciar tipos e graus de não linearidades.	
3	Representar graficamente e numericamente não linearidades.	
4	Analisar estabilidade de sistemas não linearidades.	
5	Linearizar sistemas não lineares.	
6	Controlar sistemas não lineares.	

Un	idades de ensino	Carga-horária Horas/aula
1	Unidade I: Atividades Práticas de Controle Digital 1.1 Discretização de controladores PID 1.2 Controle Deadbeat e Dahlin 1.3 Preditor de Smith	4
2	Unidade II: Simulação com sistemas não lineares 2.1 Simulações com tipos e graus de não linearidades: zona morta, folgas em engrenagens, tempo morto, histerese, etc. 2.2 Representação no espaço de estados 2.3 Discretização de sistemas não lineares, simulações	6
3	Unidade III: Análise de estabilidade de sistemas não lineares por computação 3.1 Simulação computacional de funções descritivas	6

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

	 3.2 Identificação e simulação de Ciclos limites 3.3 Simulação de planos de fase 3.4 Construção de trajetórias e análise do plano de fase 3.6 Estimação dos expoentes de Lyapunov 3.7 Pontos de equilíbrio em sistemas não-lineares, Linearização e estabilidade local, simulações 	
4	Unidade IV: Linearização 4.1 Linearização no espaço de estados por derivadas parciais: simulações para sistemas de nível e conversores 4.2 Linearização por realimentação de estados, simulações	6
5	Unidade V: Simulação e experimentos de controle de sistemas não lineares 5.1 Controle em pontos de operação 5.2 Controle por escalonamento de ganho 5.3 Controle por modos deslizantes 5.4 Controle de Caos	8
	Total	30

Bi	Bibliografia Básica	
4	FRANKLIN, G. F.; POWELL, J. D.; EMAMI-NAE, A Sistemas de Controle para	
!	Engenharia. 6 ed. Porto Alegre: Bookman, 2013.	
2	DORF, R. C.; BISHOP, R. H Sistemas de Controle Modernos. 11 ed. Rio de	
2	Janeiro: LTC, 2018.	
3	MONTEIRO, L. H. A Sistemas dinâmicos. 4 ed. São Paulo: Livraria da Física, 2019.	

Bik	Bibliografia Complementar		
1	OGATA, K Engenharia de controle moderno. 5 ed. São Paulo: Pearson Education		
	do Brasil, 2010.		
2	PHILLIPS, C. L.; PARR, J. M Feedback control systems. 5 ed. Boston: Prentice		
	Hall, 2011.		
3	KHALIL, H. K Nonlinear control. New York: Pearson, 2015.		
4	GOLNARAGHI, F.; KUO, B. C Automatic control systems. 9 ed. Danvers, M. A.:		
	John Wiley, 2010.		
5	NISE, N. S Engenharia de sistemas de controle. 7 ed. Rio de Janeiro: LTC, 2017.		

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1270/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:20)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1270, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: e6180c5a89