

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Leopoldina	
DISCIPLINA : Resistência dos Materiais	CÓDIGO: G03RMAT0.01

Início: 2023/1

Carga Horária: Total: 60 horas/aula. Semanal: 4 horas/aula Créditos: 4

Natureza: Teórica.

Área de Formação - DCN: Básica.

Competências/habilidades a serem desenvolvidas: C1.0, H1.1, H1.2, C2.0, H2.1, H2.3, C3.0, H3.1, H3.2, C4.0, H4.1, H4.4, H4.5, C5.0, H5.1, C6.0, H6.2, H6,3, C7.0, H7.1, H7.2, C8.0, H8.1, H8.2, C9.0, H9.1, H9.3, C10.0, H10.2, H10.4, H10.6, H10.7, C11.0, H11.1, C12.0, H12.1, H12.2, H12.4, C13.0, H13.1, H13.3, H13.4

Departamento que oferta a disciplina: Departamento de Mecânica

Ementa:

Estudo dos conceitos fundamentais na análise estrutural. Tensão e deformação em carregamentos axiais. Módulo de elasticidade normal e transversal e estudo dos regimes elástico e plástico. Estudo das estruturas isostáticas e sua conceituação. Estudo das forças de tração, compressão e cisalhamento e dos momentos torçor e fletor na resistência dos materiais. Momento de inércia aplicado à resistência dos materiais. Estudo das tensões normais e tangenciais. Torção e flexão em regime elástico de seções simples.

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia de Controle e Automação	4°	Mecânica	X	

INTERDISCIPLINARIDADES

Prerrequisitos	
G03MGER0.01 - Mecânica Geral	
Correquisitos	
Não há	

Objetivos: A disciplina deverá possibilitar ao estudante	
1	Compreender os fenômenos básicos da metalurgia mecânica e propriedades dos
'	materiais metálicos.
2	Desenhar e interpretar os diagramas de esforço normal, cortante e momento fletor.
3	Distribuir as tensões de tração e compressão em treliças estáticas.
4	Analisar os efeitos de tensão e deformação para um carregamento axial.
5	Quantificar e qualificar as tensões distribuídas e comparar com os limites de
	resistência dos materiais usados.

Un	idades de ensino	Carga-horária Horas/aula
1	CONCEITOS FUNDAMENTAIS DA METALURGIA MECÂNICA: 1.1 - Principais Tipos de Cargas: 1.1.1 - Tração 1.1.2 - Compressão 1.1.3 - Torção 1.1.4 - Cisalhamento 1.1.5 - Flexão	30

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

	Total	60
3	ESTUDO DAS VIGAS ISOSTÁTICAS: 3.1 - Definições de flexão e cisalhamento em vigas 3.2 - Cálculos de diagramas: 3.2.1 - Diagrama de forças axiais 3.2.2 - Diagrama da força cortante 3.2.3 - Diagrama de momento fletor 3.3 - Cálculos de Centro Geométrico de vigas (centroide) 3.4 - Cálculos do Momento de Inércia para diferentes perfis 3.5 - Distribuição das tensões de flexão em vigas com diferentes perfis	20
2	1.6 - Principais propriedades mecânicas: 1.6.1 - Ductilidade 1.6.2 - Resiliência 1.6.3 - Tenacidade 1.6.4 - Fluência 1.6.5 - Fadiga 1.6.6 - Dureza ESTUDO DAS TRELIÇAS: 2.1 - Apoios: 2.1.1 - Apoio com liberdade em x e y 2.1.2 - Apoio com liberdade em x 2.1.3 - Apoio engastado 2.2 - Cálculos de forças de reações nos apoios 2.3 - Cálculos de treliças: 2.3.1 - Cálculos de distribuição de forças em cada elemento 2.3.2 - Definições de tração e compressão 2.4 - Cálculos das tensões de tração e compressão em cada elemento	10
	 1.1.6 - Flambagem 1.2 - Principais Comportamento dos materiais: 1.2.1 - Deformação elástica 1.2.2 - Limite de escoamento 1.2.3 - Deformação plástica 1.2.4 - Encruamento 1.3 - Comportamento dos materiais no tratamento térmico: 1.3.1 - Alívio de tensões e recozimento 1.3.2 - Resfriamento de metais 1.4 - Dinâmica da Trinca 1.5 - Ensaios destrutivos e não destrutivos 	

Bik	Bibliografia Básica	
1	MELCONIAN, S Mecânica técnica e resistência dos materiais. 18. ed. São Paulo:	
'	Érica, 2011. ISBN 978-85-7194-666-8 (broch.).	
2	HIBBELER, R. C Resistência dos materiais. 7. ed. São Paulo: Pearson, 2010.	
	ISBN 9788576053736.	
3	BEER, F. P Resistência dos materiais. 3. ed. São Paulo: Pearson Makron Books,	
	1996. ISBN 9788534603447 (broch.).	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Complementar	
1	TIMOSHENKO, Stephen P. Resistência dos materiais . Rio de Janeiro: Livro
	Técnico, 1969.
2	MELCONIAN, S Mecânica técnica e resistência dos materiais. 19. ed. remod.
	São Paulo: Érica, 2012. ISBN 9788571946668 (broch.).
3	BOLTON, W Mecatrônica: uma abordagem multidisciplinar. 4. ed. Porto Alegre:
	Bookman, 2010. ISBN 9788577806577 (broch.).
4	MERIAM, J. L.; KRAIGE, L. G Mecânica: estática . 4. ed. Rio de Janeiro: LTC, 1999.
	ISBN 8521611587 (broch.).
5	BEER, F. P.; JOHNSTON, E. R Mecânica vetorial para engenheiros: cinemática
	e dinâmica. 5. ed. rev. São Paulo: Pearson Makron Books, 1994. ISBN 78-85-346-
	0203-7 (broch.).

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1253/2025 - CECALP (11.51.20)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 22/08/2025 08:03)
MARLON LUCAS GOMES SALMENTO
COORDENADOR - TITULAR
CECALP (11.51.20)
Matrícula: ###575#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1253, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 21/08/2025 e o código de verificação: 82478d7a7d